Let us apply the Feynman diagram methed to CS-p.f.:

$$
Z_{k}(M)=\int \exp (2 \pi \sqrt{-1} k C S(A)) D A
$$

\rightarrow degenerates along gauge orbit \mathscr{Y}_{α} finite-dim. analog:
Let G be an ℓ-dim. Lie group $\odot \mathbb{R}^{n}$ suppose $f\left(x_{1}, \ldots, x_{n}\right)=Q\left(x_{1}, \ldots, x_{n}\right)+\sum_{i j k} \lambda_{i j k^{\prime}} x^{i} x^{i} x^{k}$ is invariant under ${ }^{G}$.
Take $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{l}$ be smooth function with one zero along each G-orbit:

$$
\vec{x} \in \mathbb{R}^{n}: F(\vec{x})=0 \longrightarrow \text { orbit } G \vec{x}
$$

set $\varphi: G \rightarrow \mathbb{R}^{e}, \varphi(g)=F(g \vec{x})$

$$
\begin{aligned}
J(\vec{x}) & =D_{e} \varphi \quad \text { Jacobian } \\
\rightarrow \operatorname{Det} J(\vec{x}) & =\frac{\operatorname{vol}(G \dot{x})}{\operatorname{vol}(G)}
\end{aligned}
$$

Then

$$
\begin{align*}
& z_{k}=\int_{\mathbb{R}^{n}} e^{\sqrt{-1} k f\left(x_{1}, \ldots, x_{n}\right)} d x_{1}, \ldots d x_{n} \\
\longrightarrow & \int_{\mathbb{R}^{n}} e^{\sqrt{-1} k f\left(x_{1}, \ldots, x_{n}\right)} \delta(F(\vec{x})) \operatorname{det} J(\vec{x}) d x_{1}, \cdots d x_{n} \tag{*}
\end{align*}
$$

The Dirac δ-distribution can be rep. as

$$
\delta(F(\vec{x}))=\frac{1}{(2 \pi)^{e}} \int_{\mathbb{R}^{e}} e^{\sqrt{-1} \sum_{j} \cdot F_{j}(\vec{x}) \phi_{j}} d \phi_{1} \ldots d \phi_{l}
$$

and ((x) becomes

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{l}} \int_{\mathbb{R}^{n+l}} e^{\sqrt{-1}\left(k f\left(x_{1}, \ldots, x_{n}\right)+\sum_{j} \cdot F_{j} \cdot(\vec{x}) \phi_{j}\right)} \\
& \quad x \operatorname{det} J(\vec{x}) d x_{1} \ldots d x_{n} d \phi_{1} \ldots d \phi_{l}
\end{aligned}
$$

Now use

$$
\operatorname{det} \gamma(\vec{x})=\int e^{\sqrt{-1} \Sigma_{i j} \cdot \bar{c}_{i} \gamma_{i j} \cdot c_{j}} d \bar{c}_{1}, \ldots d \bar{c}_{l} d c_{1} \ldots d c_{e}
$$

where $\left\{c_{i}\right\},\left\{\bar{c}_{i}\right\}, 1 \leq i \leq \ell$ are Grassman variables satisfying

$$
\begin{gathered}
C_{i} c_{j}+C_{j} c_{i}=0, \quad \bar{C}_{i} \bar{c}_{j}+\bar{C}_{j} \cdot \bar{c}_{i}=0, \quad c_{i} \bar{c}_{j}=\bar{c}_{i} c_{i} \\
1
\end{gathered}
$$

In total we $(*) \rightarrow$

$$
\frac{1}{(2 \pi)^{l}} \int_{\mathbb{R}^{n+l}} e^{\sqrt{-1}\left(k f\left(x_{1}, \ldots, x_{n}\right)+\sum_{j} F_{j}(\bar{x}) \phi_{j}+\sum_{i j} \bar{c}_{i} j_{i j} c_{j}\right)} d\left\{x_{i}\right\} d\left\{\phi_{i}\right\} d\left\{c_{i}\right\}
$$

In the case of $C S$-theory, restrict to

$$
d_{\alpha}^{*} A=0^{\top} \quad(\text { analog of } F(\vec{x})=0)
$$

"gauge fixing"

Let M be a closed oriented 3 -mfd Fix α (su(2) connection) such that

$$
H^{*}\left(M, g_{\alpha}\right)=0
$$

Let $\left\{I_{a}\right\}, a=1,2,3$ be an orthonormal basis of the Lie algebra of $=\operatorname{su}(2)$
Let $L \in \Omega^{2}(M \times M ; o f \otimes o f)$ and write

$$
L=\sum_{a, b} L_{a b}(x, y) I_{a} \wedge I_{b}
$$

\rightarrow for L to be Green form, it must satisfy

$$
d(\alpha, \alpha) L_{(a, b)}(x, y)=-\delta_{a b} \quad \delta(x, y)
$$

covariant der.
where $f(x, y),(x, y) \in M \times M$ satisfies

$$
\int_{M \times M} \delta(x, y) \psi(x, y)=\int_{M} \psi(x, x)
$$

for a 3-form $\psi(x, y)$ on $M \times M$. We have

$$
L_{a b}(x, y)=-L_{b a}(y, x)
$$

Denote by $\left\{\gamma_{a b} c\right\}$ the structure constants of of Then Feynman diagrams

and $\Gamma_{2}=$

become

$$
\begin{aligned}
I_{T_{1}}(M, \alpha)= & -\frac{1}{8} \sum \int_{M \times M \mid \Delta} \gamma_{a_{1} b_{1} c_{1}} \gamma_{a_{2} b_{2} c_{2}} \\
& \times L_{a_{1} c_{1}}\left(x_{1}, x_{1}\right) \wedge L_{a_{2} c_{2}}\left(x_{2}, x_{2}\right) \wedge L_{b_{1} b_{2}}\left(x_{1}, x_{2}\right) \\
I_{\Gamma_{\alpha}}(M, \alpha)= & \frac{1}{12} \sum_{M \times M V \Delta} \gamma_{a_{1} b_{1} c_{1}} \gamma_{a_{2} b_{2} c_{2}} \\
& \times L_{a_{1} a_{2}}\left(x_{1}, x_{2}\right) \wedge L_{c_{1} c_{2}}\left(x_{1}, x_{2}\right) \wedge L_{b_{1} b_{2}}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Fix framing s of M (trivialization of tangent bundle $) \rightarrow C S_{\text {gram }}(g, s)$
gravitational CS-invaviant
Theorem 1:
Let M be a closed oriented 3 -mfd Then for an sur(α) flat connection α,

$$
I_{\Gamma_{1}}(M, \alpha)+I_{\Gamma_{2}}(M, \alpha)-\frac{1}{4 \pi} C_{S_{\text {grave }}}(g, s)
$$

is a top. invariant of M and does not depend an the choice of a Rie mannian metric for M.

Sketch of proof:
Consider a cone-parameter family of Riemannian metrics $\left\{g^{+}\right\}$
\rightarrow Green forms L^{t}
Denote by ∇ diff. operator with respect tot
Since $d_{(\alpha, t)} L^{t}=$ tindep.

$$
\rightarrow d_{(\alpha, \alpha)} \nabla L^{t}=0
$$

Since $H^{*}\left(M, o_{\alpha}\right)=0$, we have
$\exists 1$-form B_{t} an $M \times M$ with
values in of \otimes of satisfying

$$
\nabla L^{+}=d_{(\alpha, \alpha)} B^{\dagger}
$$

Express B^{\dagger} as

$$
B^{\dagger}=\sum B_{a b}^{t}(x, y) I_{a} \wedge I_{b}
$$

Compactify the space $\operatorname{Couf}_{2}(M)=M \times M \backslash \Delta$

$$
\longrightarrow \overline{\operatorname{Conf}_{2}(M)}
$$

Integrals $I_{\Gamma_{1}}$ and $I_{\Gamma_{2}}$ are over $\overline{\operatorname{con} f_{2}(M)}$

One then computes using Stokes' th.

$$
\begin{align*}
& \nabla I_{\Gamma_{1}} \\
& =\frac{1}{8} \int_{\operatorname{Con} f_{2}(M)} \sum_{a_{1} b_{1} c_{1}} \gamma_{a_{2} b_{2} c_{2}} B_{a_{1} c_{1}}^{\dagger}\left(x_{1}, x_{1}\right) L_{a_{2} c_{2}}^{+}\left(x_{2}, x_{2}\right) \delta_{b_{1}, b_{2}} \delta\left(x, x_{2}\right) \\
& +\frac{1}{8} \int_{\operatorname{conf}_{2}(M)} \sum \gamma_{a_{1} b_{1} c_{1}} \gamma_{a_{2} b_{2} c_{2}} L_{a_{1} c_{1}}^{t}\left(x_{1}, x_{1}\right) B_{a_{2} c_{2}}^{\dagger}\left(x_{2}, x_{2}\right) \delta_{b_{1} b_{2}} \delta\left(x_{1}, x_{2}\right) \\
& +\int_{\partial \overline{C_{0 n f}(M)}} \cdots \\
& =\frac{1}{4} \int_{M} \sum \gamma_{\text {and }} \text { ref } B_{c d}^{\dagger}(x, x) L_{e f}^{+}(x, x)+\int_{\partial \operatorname{Conf}_{2}(M)} \ldots \tag{1}
\end{align*}
$$

$$
\begin{align*}
&= \frac{1}{4} \int_{M}^{\nabla \Gamma_{2}} \\
& \quad \sum^{1}\left(\gamma_{a c e} \gamma_{a f d}-\gamma_{a c p} \gamma_{a e d}\right) D_{c d}^{\dagger}(x, x) L_{e f}^{\dagger}(x, x) \\
& \cdots \tag{2}
\end{align*}
$$

Then $\nabla I_{\Gamma_{1}}+\nabla I_{\Gamma_{2}}=0$ follows from Jacobi-identity and $\int_{\partial \operatorname{ConfL}^{(M)}} \frac{\cdots .}{}$ is cancelled against variation of CoSgrave.

